
Stephen Checkoway

Programming Abstractions
Week 12-2: Promises

Finishing up macros

Consider switch
(switch exp [case-1 exp-1] ... [case-n exp-n])

The behavior we want is

‣ exp is evaluated;

‣ the result is compared against each of case-1 through case-n in order;

‣ if the result is equal to case-i then the value of the expression is exp-i

It should behave the same as

(let ([result exp])

 (cond [(equal? result case-1) exp-1]

 ...

 [(equal? result case-n) exp-n]))

Let's define a switch syntax!

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ...)

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...))]))

(switch (- 2 1)

 [0 "zero"]

 [1 "one"]

 [2 "two"])

Let's define a switch syntax!

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ...)

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...))]))

(switch (- 2 1)

 [0 "zero"]

 [1 "one"]

 [2 "two"])

(let ([result (- 2 1)])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]))

What is the value of this?

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ...)

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...))]))

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

A. 3

B. "three"

C. void

D. It's an error

5

Let's add an [else exp] to switch

We want to support an else

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "something else"])

As we've currently implemented switch, this won't work

‣ Why not?

Let's add an [else exp] to switch

We want to support an else

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "something else"])

As we've currently implemented switch, this won't work

‣ Why not?
(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]

 [(equal? result else) "something else"]))

First attempt

(define-syntax switch

 (syntax-rules ()

 [(_ exp [case case-exp] ... [else else-exp])

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...

 [else else-exp]))]

 [(_ exp [case case-exp] ...)

 (switch exp [case case-exp] ... [else (void)])]))

Two rules, each with a pattern and a matching transformation

Idea: a (switch …) without an [else …] matches the second rule;

a (switch …) with an [else …] matches the first rule

Recursive

macros are

fine!

Trying it out

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "something else"])

returns "something else"

Success?

Not quite

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

returns "two"!

The problem is this switch matches the first pattern

(_ exp [case case-exp] ... [else else-exp])

We need to inform Racket that else is not a pattern variable and is meant to be

matched literally

Not quite

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

returns "two"!

The problem is this switch matches the first pattern

(_ exp [case case-exp] ... [else else-exp])

We need to inform Racket that else is not a pattern variable and is meant to be

matched literally

(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [2 "two"]))

Literal matches
(syntax-rules (literal ...) [pattern transform] ...)

The first argument to syntax-rules is a list of words to match literally

(define-syntax switch

 (syntax-rules (else)

 [(_ exp [case case-exp] ... [else else-exp])

 (let ([result exp])

 (cond [(equal? result case) case-exp] ...

 [else else-exp]))]

 [(_ exp [case case-exp] ...)

 (switch exp [case case-exp] ... [else (void)])]))

else is not a pattern variable;

it's matched literally

Second attempt

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"])

Result is void

(switch 3

 [0 "zero"]

 [1 "one"]

 [2 "two"]

 [else "blah"])

Result is "blah"

(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]

 [else (void)]))

(let ([result 3])

 (cond [(equal? result 0) "zero"]

 [(equal? result 1) "one"]

 [(equal? result 2) "two"]

 [else "blah"]))

Macros match arguments, not evaluate

When a macro is being evaluated, the arguments are matched against the

pattern but they aren't evaluated

(switch 1

 [0 (displayln "zero")]

 [1 (displayln "one")]

 [2 (displayln "two")]

 [else (displayln "something else")])

This prints one

If the arguments were evaluated (well, it'd be an error because 0 isn't a

procedure) but it'd also print out zero, one, two, something else

Hygienic macros?

Macros in other languages can introduce variables that shadow variables used

in the arguments (unhygienic)

(define-syntax value-of-var

 (syntax-rules ()

 [(_ var) (let ([x 0]) var)]))

(let ([x 10])

 (value-of-var x))

If Scheme used textual replacement, the let would become

(let ([x 10])  
 (let ([x 0]) x))

which would have value 0

Scheme macros are hygienic so the actual value is 10

Promises

Promises

Some new Scheme special forms

(delay exp) returns an object called a promise, without evaluating exp

(force promise) evaluates the promised expression and returns its value

‣ A promised expression is evaluated only once, no matter how many times it is

evaluated!

Example

(define foo

 (delay

 (begin

 (displayln "Promise is evaluated")

 2)))

(force foo) ; prints "Promise is evaluated"; returns 2

(force foo) ; returns 2

(force foo) ; returns 2

Example

(define foo

 (delay

 (begin

 (displayln "Promise is evaluated")

 2)))

(force foo) ; prints "Promise is evaluated"; returns 2

(force foo) ; returns 2

(force foo) ; returns 2

begin not needed in Racket

delay allows arbitrary number

of expressions

Implementing delay and force

Before we talk about why we might want this, let's talk about how we can

implement it

First attempt: define delay as a procedure that returns a procedure

(define (delay exp)

 (λ ()

 exp))

(define (force promise)

 (promise))

What goes wrong with this definition?

(define (delay exp)

 (λ ()

 exp))

(define (force promise)

 (promise))

A. When you know what goes wrong, select this choice

18

Evaluation isn't delayed

(delay

 (displayln "Lazy evaluation would be nice"))

Since delay was implemented as a procedure, its argument is evaluated when

delay is called

force will correctly return the value, but it was already computed; we need to

delay the computation until force is called

We need a macro!

Let's think about what we want

We want

(delay exp)

to become something like

(λ () exp)

Second attempt: define delay as a macro which produces a λ

(define-syntax delay

 (syntax-rules ()

 [(_ exp) (λ () exp)]))

(define (force promise)

 (promise))

Example

(define foo

 (delay

 (begin

 (displayln "This time, it's lazy!")

 10)))

This successfully defines foo as

(λ ()

 (begin

 (displayln "This time, it's lazy!")

 10))

and it doesn't evaluate until (force foo)

What goes wrong with this definition?

(define-syntax delay

 (syntax-rules ()

 [(_ exp) (λ () exp)]))

(define (force promise)

 (promise))

A. When you know what goes wrong, select this choice

22

Each time we force the promise, it's evaluated

(force foo) ; prints "This time it's lazy"; returns 10

(force foo) ; prints "This time it's lazy"; returns 10

(force foo) ; prints "This time it's lazy"; returns 10

We're going to need some mutation

We need to remember two things

‣ Has the promise been forced yet?

‣ If so, what was the value?

What we really want

We want

(delay exp)

to become something like

(let ([evaluated #f]

 [value 0])

 (λ ()

 (if evaluated

 value

 (begin

 (set! value exp)

 (set! evaluated #t)

 value))))

When the result is forced (i.e.,

called) the first time

‣ exp will be evaluated

‣ value will be set to the result

‣ evaluated will be set to #t

‣ value is returned

On subsequent calls

‣ value is returned

When would we use promises?

We can build an infinite data structure like an infinite list

‣ An infinite list of primes

‣ The Fibonacci sequence

If our language supports concurrent execution (i.e., multiple computations

happening at the same time), we can model a long-running computation as a

promise

‣ Creating the promise doesn't actually delay evaluation, it starts a thread that

performs the computation

‣ Forcing the promise causes the current thread to wait until the computing

thread has finished before returning the answer

Promises in other languages

JavaScript has async which starts some potentially long-running calculation or

(more typically) starts loading a resource from the Internet and returns a promise

This is paired with await which waits for the promise to finish computing/

resource to download and returns the answer

Rust has something similar

Let's build an infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

Let's build an infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

force

Let's build an infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

5 #<promise>

force

force

The uninteresting piece: checking primality

(define (prime? n)

 (cond [(= n 2) #t]

 [(even? n) #f]

 [else (not

 (ormap

 (λ (m) (zero? (remainder n m)))

 (range 3

 (add1 (exact-floor (sqrt n)))

 2)))]))

Does the simple thing and checks if dividing n by any odd m up to gives

remainder 0

n

The interesting piece: building the list

next-prime checks if n is prime and if so, returns a cons cell containing n and

a promise to construct the next one; otherwise it recurses on n+2

(define (next-prime n)

 (cond [(prime? n) (cons n

 (delay (next-prime (+ n 2))))]

 [else (next-prime (+ n 2))]))

primes returns a cons cell containing 2 and a promise to construct the next

one

(define (primes)

 (cons 2

 (delay (next-prime 3))))

Infinite list in action!

> (define prime-lst (primes))

> prime-lst

'(2 . #<promise>)

> (force (cdr prime-lst))

'(3 . #<promise>)

> (force (cdr (force (cdr prime-lst))))

'(5 . #<promise>)

> prime-lst

'(2 . #<promise!(3 . #<promise!(5 . #<promise>)>)>)

Using our list

(define (print-until n prime-lst)

 (let ([prime (car prime-lst)])

 (if (<= prime n)

 (begin

 (displayln prime)

 (print-until n (force (cdr prime-lst))))

 prime-lst))) ; Return the remainder of the list

Using our list

> (print-until 15 prime-lst)

2

3

5

7

11

13

'(17 . #<promise>)

